2.2.2. ПРИКЛАДНАЯ ИНТЕРПРЕТАЦИЯ И ХАРАКТЕРИСТИКИ МЕТОДА КОНЕЧНЫХ ПРИРАЩЕНИЙ

Таким образом, последовательно используя фундаментальные теоремы математики, новый метод экономического факторного анализа - метод Лагранжа или метод конечных приращений - предлагает оригинальный, отличный от ранее применявшихся, подход для определения величин
55
влияния изменения факторов на изменение результирующего показателя, который в общем виде позволяет использовать для решения основной задачи экономического факторного анализа следующую формулу: Axi = K -Ax; = fx i (x1 +aAx1, x 2 + aAx 2,-, xn + aAxn) Ax;. (2.13)
Возможность нахождения точного разложения приращения функции открывает широкие перспективы для применения теоремы о среднем в экономическом анализе, так как величины, входящие в (2.10), имеют содержательную экономическую интерпретацию: приращение функции Ay есть изменение результирующего показателя, а xi и Axi - соответственно фактор и его приращение.
Таким образом, применённый методологический подход в очередной раз доказывает тезис о том, что теоретические основы классического математического анализа находят своё актуальное приложение в теории и практике современного экономического анализа.
При этом, необходимо отметить ряд отличительных особенностей нового метода, которые доказывают правомерность его использования наряду или вместо базовых алгоритмов.
Так, использование соотношения (2.13) позволяет рассчитать элементы структуры факторной системы таким образом, что каждый фактор модели равноправен по отношению к другим, так как при этом не используются никакие априорные предположения о значимости или приоритете того или иного фактора, то есть соблюдается положение о независимости факторов. Структура факторной системы в этом случае сохраняет вид:
n
Ay = ? Ax. = Ax1 +Ax2 + ... + Axn . (2.14)
i=1
Из полученных формул также следует очевидный вывод о том, что применение формулы Лагранжа позволяет решить проблему неразложимого остатка, величина которого оказывается распределённой между факторами.
Вычисляемые в новом методе значения параметра a позволяют также находить сами промежуточные значения факторов, при которых изменение результирующей функции точно представляется в виде искомой комбинации величин влияния приращений факторов на приращение обобщающего показателя. Возможность определения одного или нескольких наборов промежуточных значений факторов позволяет осуществлять более полную интерпретацию результатов анализа при решении конкретных прикладных задач.
В этом случае качественный анализ величин факторного влияния, рассчитанных по методу конечных приращений, при сравнении их с результатами, получаемыми при использовании других методов экономического факторного анализа, позволяет получить исходную информацию, которая необходима при последующем решении задачи управления исследуемым процессом.
Рассмотрим отличия нового алгоритма от имеющихся методик экономического факторного анализа на примере двухфакторной мультипликативной модели.
Прежде всего необходимо отметить, что применение интегральной формы теоремы о среднем позволяет получить результаты, идентичные тем, что достигаются с использованием интегрального метода. При этом, вычислительный алгоритм, опирающийся на (2.12), является более простым в применении, чем использование матриц исходных значений для построения подынтегральных выражений в интегральном методе [7, С. 135-137].
Переходя к вопросу решения задачи распределения величины неразложимого остатка, следует указать, что применение теоремы о среднем позволяет распределить неразложимый остаток между факторами поровну (рис.
2.4 (проекция на плоскость XY) и рис. 2.6 d), в отличие от других методов, когда остаток относится к одному или к другому фактору (рис. 2.6 a и 2.6 b ), или же не распределяется совсем и рассматривается как самостоятельная величина (рис. 2.6 с ).
Метод, опирающийся на теорему о среднем значении, как было указано выше, позволяет проводить экономический факторный анализ в случае любых конечных приращений факторов. Это является тем более важным в условиях современных процессов хозяйствования, когда приращения факторов и результирующего показателя не являются малыми, что затрудняет применение классических методов экономического факторного анализа.
Важной особенностью нового метода является то, что он учитывает структуру взаимосвязей факторов, а также даёт общий подход к решению различных задач независимо от количества элементов, входящих в модель факторной системы, и формы связи между ними. Таким образом, появляется возможность применять алгоритмы факторного анализа при исследовании широкого спектра показателей. Данное преимущество имеет большое значение в практической работе, когда специалист работает не только с классическими, но и с различными смешанными типами систем. В этом
случае при использовании метода Лагранжа нет необходимости применять дополнительные способы для упрощения нестандартных функций.

Рис. 2.6. Иллюстрация расчётов различными методами влияния факторов на результирующий показатель


Рис. 2.6. Иллюстрация расчётов различными методами влияния факторов на результирующий показатель


К преимуществам метода конечных приращений можно отнести тот факт, что для его непосредственного применения не требуется использовать сложные вычислительные алгоритмы, что имеет большое значение в практике аналитической работы на предприятии, когда важно владеть методами безмашинного анализа факторных моделей [81]. Применение метода Лагранжа для составления рабочих формул для анализируемого типа факторной системы предполагает знание специалистом-аналитиком лишь базовых основ дифференциального или интегрального исчисления. В доказательство этого тезиса, далее будут выведены выражения для вы-
5
числения величин факторного влияния для наиболее часто встречающихся типов моделей.
Как и в случае интегрального метода [7], можно выделить два направления практического использования метода Лагранжа в решении задач факторного анализа.
К первому направлению относятся задачи статического факторного анализа, когда нет информации об изменении факторов внутри анализируемого периода. К статическим типам задач относятся расчёты, связан-ные с анализом выполнения плана показателей - анализ исполнения бюджета, анализ плана производства и продажи продукции и т.п.
Статический тип задач факторного анализа - наиболее разработанный и распространённый тип задач в детерминированном анализе хозяйственной и производственной деятельности управляемых объектов.
Ко второму направлению можно отнести задачи факторного анализа, когда имеется информация об изменениях факторов внутри анализируемого периода и она должна приниматься во внимание, то есть случай, когда этот период в соответствии с имеющимися данными разбивается на ряд элементарных.
Этот тип задач факторного анализа можно назвать динамическим, так как при этом участвующие в анализе факторы изменяются на каждом элементе разбиваемого на участки периода (номенклатурного перечня). К динамическим типам задач следует относить расчёты, связанные с анализом временных рядов анализируемых показателей.
<< | >>
Источник: Блюмин С.Л., Суханов В.Ф., Чеботарёв С.В.. Экономический факторный анализ: Монография. - Липецк: ЛЭГИ,2004. - 148 с.. 2004

Еще по теме 2.2.2. ПРИКЛАДНАЯ ИНТЕРПРЕТАЦИЯ И ХАРАКТЕРИСТИКИ МЕТОДА КОНЕЧНЫХ ПРИРАЩЕНИЙ:

  1. 2.1.3. МЕТОДЫ ЭКОНОМИЧЕСКОГО ФАКТОРНОГО АНАЛИЗА
  2. МЕТОД ДРОБЛЕНИЯ ПРИРАЩЕНИЙ ФАКТОРОВ
  3. 2.2.1. ТЕОРЕМА ЛАГРАНЖА И СВЯЗАННЫЕ С НЕЙ ТЕОРЕМЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА
  4. 2.2.2. ПРИКЛАДНАЯ ИНТЕРПРЕТАЦИЯ И ХАРАКТЕРИСТИКИ МЕТОДА КОНЕЧНЫХ ПРИРАЩЕНИЙ
  5. 2.2.3. СОСТАВЛЕНИЕ РАБОЧИХ ФОРМУЛ НОВОГО МЕТОДА ДЛЯ РАЗЛИЧНЫХ МОДЕЛЕЙ ЭКОНОМИЧЕСКОГО ФАКТОРНОГО АНАЛИЗА
  6. 2.2.4. ПРИМЕРЫ
  7. 2.3.2. СПОСОБ ПРОСТОИ ГРУППИРОВКИ
  8. 2.3.3. СПОСОБ УСРЕДНЕНИЯ НЕАДДИТИВНОГО ПОКАЗАТЕЛЯ ПО АДДИТИВНОМУ
  9. 2.6. ВЫВОДЫ
  10. 3.2. МАТЕМАТИЧЕСКИЕ МОДЕЛИ ЭНЕРГОПОТРЕБЛЕНИЯ
  11. 3.3. ПРИМЕРЫ УПРАВЛЕНИЯ ЭНЕРГОПОТРЕБЛЕНИЕММЕТАЛЛУРГИЧЕСКОГО ПРЕДПРИЯТИЯ С ПРИМЕНЕНИЕМ МЕТОДА КОНЕЧНЫХ ПРИРАЩЕНИЙ
  12. 3.4. ВЫВОДЫ
  13. 1.6.8. Метод дробления приращений факторов
  14. 18.3. Методи оцінювання фінансової стійкості банків та управління їхньою ліквідністю
  15. Основные проблемы развития методов платежа в Интернете
- Авторское право - Адвокатура - Административное право - Административный процесс - Антимонопольно-конкурентное право - Арбитражный (хозяйственный) процесс - Аудит - Банковская система - Банковское право - Бизнес - Бухгалтерский учет - Вещное право - Государственное право и управление - Гражданское право и процесс - Денежное обращение, финансы и кредит - Деньги - Дипломатическое и консульское право - Договорное право - Жилищное право - Земельное право - Избирательное право - Инвестиционное право - Информационное право - Исполнительное производство - История государства и права - История политических и правовых учений - Конкурсное право - Конституционное право - Корпоративное право - Криминалистика - Криминология - Маркетинг - Медицинское право - Международное право - Менеджмент - Муниципальное право - Налоговое право - Наследственное право - Нотариат - Обязательственное право - Оперативно-розыскная деятельность - Права человека - Право зарубежных стран - Право социального обеспечения - Правоведение - Правоохранительная деятельность - Предпринимательское право - Семейное право - Страховое право - Судопроизводство - Таможенное право - Теория государства и права - Трудовое право - Уголовно-исполнительное право - Уголовное право - Уголовный процесс - Философия - Финансовое право - Хозяйственное право - Хозяйственный процесс - Экологическое право - Экономика - Ювенальное право - Юридическая деятельность - Юридическая техника - Юридические лица -